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The Influence of Axial Forcecs on the
Collapse Loads of Frames

By 2. T. Oonatl and Ww. Prazer2

Abstract. In the 1limit analysis of frames the

influence of the axial forces 1s usually neglected be-
cause the limit moment of a section is not reduced
seriously by a moderate axial force. In ar earlier
paper concerned with the limit analysic of arches3 it
was shown that the presence of axial forces reqguires
the use of yield hinges that allow not only relative
rotation but also relative axial displacement of

ad Jacent cross sections, In the present paper a
different cpproach is discussed: the extensible hinges
on the center line arc¢ replaced by ordinary hinges off
the center line. It is shown that,under certain assump-
tions, the location and the 1limit roment of an off-
center hinze are indepcndent of the axial force, The
collapse load of a frame in which axial forces must

be considered is thus found to cqual the collapse load
of a 3li7htly modified frame 1in vhich axial forces may

be neelected,

1 Frank B, Jewett Fellow in Applicd Mathematics, Brown
University.

2 Professor of Applied Mochanices, Brown University.

3 E. T. Onat and W, Prager, "Limit analysis of arches",
J, ticeh, Phys, Solids 1, 77 (1953),
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The concepts of 1imit analysis were developed in the
twenties in connection with the design of continuous beamsk.
The application of limit analysis to the design of frames con-
stitutes a relatively recent advance5. There are several reasons
for this surprising time lag in -he development of neighboring
rields of structural engineering, Firstly, even for continuous
beams experimental corroboration of the basic hypotheses was
slow in forthcomingé. Secondly, the simple techniques that wvere
adequate for continuous beams did not prove useful for complex
frames; only in the last few years have efficient techniques
been developed’. Finally, there were the difficulties created
by the prescnce of axial forces in frames, In addition to rais-
ing the question of structural stability, axial forces lower the
limit moments of the members ir which they act,

A5 regards stability, both 1limit analysis and elastic

analysis arc based on the assumption that all compression members

% N, C. Kist, "Mic Zachigkeit des Materials als Grundlage fuer
die berechnung von Eruecken, Hochbauten, und aehnlichen Kon-
struktionen aus Flusseisen", Fisenbau 11, 425 (1920),

5 J. F. fcker, "A review of recent investigations into the
behaviour of stecl frames in the plastic range", J. Inst,
C.E. 31, 183 (1°49),

6 H, Maier-leibnitz, "Test results, their interpretation and
application”, Preiim. Publ,, 2nd Congress, Internat., issoc,
Bridge Ctruct. Enge,, Perlin, 1936, p. 97.

7 P. S, Symonds and B, G. I'eal, "Recent progress in the plestic
method of structural analysis", J. Franklin Inst., 252, 383,
469 (1971),
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have sufficiently low slenderness ratios tc ensure structural
stability. Only after the axial forces have becen determined
under this assumption can the possibility of buckling be in-
vestigated. OCf course, the results of the first analysis are
accepted only 1f the subsequent chack shows that there is no
danger of instability. Ctherwise, the critical members must be
strengthencd, and the analysis must be repeated,

The influence of the axial forces on the 1imit moments
can be treated by a similar itcrative procecdure, In the first
step of the analysis the limit moments in the absence of axiel
forces arc used. The axial forces found in the first step arc
then uscd to determine reduced limit moments for the second step,
and so on, Two or threcec steps arec usuelly sufficicnt. VWhercas
this method is suited i1or the numerical solution of concrete
problerms, it dces not yield general results.

Instead of retaining the concept of the yield hinge
and discussing the influence of an axial force on the limit
moment in this hinge, consider the manner in which this concept
must be modified for members carrying bending and direct stresses,.
For brevity, the following discussion will be restricted to
members that are symmetric with respect to the plane of bending.
loreover, all elastic deformations will be neglected. This
amounts to treating the perfectly plastic materialas rigid where-
ever the stressas are below the yield limit,

The statec of stress at a generic cross section is
spcceified by the bending moment M and the axial force N, The

generalized strain ratcs corrosponding to the generalized stresses
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M, N are the rate of bending $ and the rate of extcnsion €. The
relative anju®ar velocity of two neighboring cross sections is
¥ dx, where d= is the infinitesimal distance between these
sections, and the relative axial velocity of their centroilds 1s
e dx. The siz=n conventions for ¥ and € are so adjusted to those
for M and N that

D dx = (My + Ne)dx (1)
represcnts the rate at which mechanical eneryy is dissipated in
the plastic fl.cw of the material betwoen the two cross scctions,
The quantity D = My + Ne will be called the specific rate of
dissipation,

_ The neutral axis, which is normal to the plane of bend-
ing, divides the ssctior into two parts, If the plastic-rigid
member is to deform at all, the axial stress must equal the
vield 1imit im tension at all peints in one part and the yield
1imit in compression at all points in the other part. With this
type of stress: distribution, each assumed position of the neutral
axis furnishes. a combination of M and N that will produce plastic
flow, Horeove-r, under ti.e usual assumptior that matcrial cross
sectionc rerai rn plane during the bending process, the position
of the neutral axis specifies the ratio between ¥ and ¢,

Figure 1 shows a syrmetric section with the centroid C,
and two fully plastic stress distributions correspondinz to
neighboring po critions of the neutral axis. The compressive
stresses vhich must be added to the first distribution to cbtain

the second ont¢ are repreosented by the shaded rectancle. The
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correspondine chanies in bending moment and axial force are
dM = 200 by,

(2)

M = -2 b,

-~

where S 4 is the intensity of the yield stress in tension or
compression, y the distance of the neutral axis from the centroid,
and b the wicth of the section at the distance y. Vhile Egs,

(2) have beer derived for a specific situation, it is readily
seen that they have general validity nrovided the usual sizn
conventions are made: the positive y axis points from the
centrold towards the tLop of the =ectlion; a positive bending

mement. producss tension at the bettom of the section, and a
positive axial force stresses the member in tension. Since e=YVy,

Ecs, (2) yield

dM 5 _ E

A geometric interpretation of Eq, (3) is obtained as
follows, let M, be the limit moment in pure flexure and Ky the

limit force in simple tension, With

p= MMy vE N, X = UM/ (%)

Eq. (3) can be written in the form

dp = _ &
dv X

Using p and v as rectangular Cartesian coordinates, represent

. (5)

the fully plastic states of stress tv the points of the "yield
curve'", For a rectangular s2>ction, the yicld curve is found to

consist of the full-linc parabolic arcs shown in Fig, 2 (sce the
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paper mentioned in Footnote 3), For an idealized I section with
indefinitely thin web and flanges, the yield curve is the broken=-
line square in Fig. 2; for most structural sections the yield
curve falls between the full and the broken lines in Fig. 2.
Consider now the fully plastic state of stress represented by
the generic point P of the yield curve. If the type of plastic
flow which occurs under this state of stress is represented by
the "flow vector" with the components € and X , Eq. (5) shows
that this vector has the direction of the exterior normal of the
yield curve at P. On account of this normality the yield curve
specifies not only the fully plastic states of stress but also
the associated types of plastic flow. In other words, the yield
curve reprenscents not only the yield condition but also the flow
rule,

In Fig, 3, let the full line represent the yield curve
which is surnposed %o be symmetric with respect to the v axis,
Since the axial forces in structural frames of conventional de-
sign play a‘role secondary to that of the bending morents, only
the central part of the yleld curve corresponding to, say,

ivl < 0.5 ic of importance. For matheratical simplicity, this
part may be approximated by two straight line segments AB and

BC, This amounts to replacing the actual yield ccndition by
lpl =1 ~ clvl, (6)
where ¢ 15 a constant, Since the orthezcnality tetween yield

curve and f{lcw vector is an essential feature of the general
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theory of 1imit design®, the modified yield condition (6) implies
the followinzs rule |
el = elxl, (7)
the sign of x and ¢ agreeing with those of u and v, respectively,
The flow rule (?) can be given the following mechkanical
irnterpretation, Consider a beam with an off-center hinge under
the actlon of a bending moment M and a compressive force I as
shown in Fi:, 4, If the distance betwe~n the hinge axis and the
centroidal axis of the beam equals cM,/N_, the rate of bending ¥
in the hinge is accompanied bv a rate of shortening e = chw/No =
cx in the centroidel fiber., A hinge at a fixed distance frpm
the centroidsl axils thernfare enforces the flow rule (7)., 1In
view of the fact that i! in Fig, 4 1s positive while N is negative,

the resultinz moment of M and I' with respect to the hinge axils 1s

IM[ + ¢ gﬁ INl =M Upl+elvl) =n (8)
by Eq. (6). Within the limits of validity of thec approximate
yield condition (6) and the associated flow rule (7), the in-
fluence of axial forces on the c¢ollapse lecads of frames can
therefore be evaluated by using off-center hingces that ylield
under the constant momont NO. Bv tris device the 1limit analysis

of a frame in which axial forces must be ccnsidered can be

t— -—

W, Praser, "The gereral thenry of limit design", Sectional
Address pre-ented &f the £th International Congress of
Theoretical and Anplied Mechanies, Istanbul, 1952, to
appear in the Proceedinzes of the Congress,



Al11-87 -8-

reduced to the limit analysis of a frame in which axial forces
may be neglected,

For an 1dealized 1 section with the broken-line yield
square of Fiz, 2, the constant ¢ equals unity. Moreover, for
such a beam MO/TO = H/2, where K 1is the dept:r of the beam. The
distance of the yield hinge from the centroidal axis therefore
equals H/2 in this case. For actual structural I sections this
distance is smaller than one half of the depth of the scction,
The fact that the yield hinees used in the analysis in wivich
axlal forces are neglectod must only be slightly displaced to
include the influence of axial forces affords a valuable intui-
tiﬁc insi~“ht into the role of axial forces in the plastic col-

lapse of frames,
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